Modeling Relapsing Disease Dynamics in a Host-Vector Community

نویسندگان

  • Tammi L. Johnson
  • Erin L. Landguth
  • Emily F. Stone
  • Janet Foley
چکیده

Vector-borne diseases represent a threat to human and wildlife populations and mathematical models provide a means to understand and control epidemics involved in complex host-vector systems. The disease model studied here is a host-vector system with a relapsing class of host individuals, used to investigate tick-borne relapsing fever (TBRF). Equilibrium analysis is performed for models with increasing numbers of relapses and multiple hosts and the disease reproduction number, R0, is generalized to establish relationships with parameters that would result in the elimination of the disease. We show that host relapses in a single competent host-vector system is needed to maintain an endemic state. We show that the addition of an incompetent second host with no relapses increases the number of relapses needed for maintaining the pathogen in the first competent host system. Further, coupling of the system with hosts of differing competencies will always reduce R0, making it more difficult for the system to reach an endemic state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecological niche modeling and distribution of Ornithodoros hermsi associated with tick-borne relapsing fever in western North America

Tick-borne relapsing fever in western North America is a zoonosis caused by the spirochete bacterium, Borrelia hermsii, which is transmitted by the bite of infected Ornithodoros hermsi ticks. The pathogen is maintained in natural cycles involving small rodent hosts such as chipmunks and tree squirrels, as well as the tick vector. In order for these ticks to establish sustained and viable popula...

متن کامل

Vector-host interactions in disease transmission.

Tick-borne spirochetes include borreliae that cause Lyme disease and relapsing fever in humans. They survive in a triangle of parasitic interactions between the spirochete and its vertebrate host, the spirochete and its tick vector, and the host and the tick. Until recently, the significance of vector-host interactions in the transmission of arthropod-borne disease agents has been overlooked. H...

متن کامل

Modeling the Effects of Reservoir Competence Decay and Demographic Turnover in Lyme Disease Ecology

Lyme disease risk is related to the abundance of infected nymphal ticks, which in turn depends on the abundance and reservoir competence of wild hosts. Reservoir competence of a host (i.e., probability that an infected host will infect a feeding vector) often declines over time after inoculation, and small mammalian reservoirs typically undergo rapid population growth during the period when vec...

متن کامل

Transmission Dynamics of Borrelia turicatae from the Arthropod Vector

BACKGROUND With the global distribution, morbidity, and mortality associated with tick and louse-borne relapsing fever spirochetes, it is important to understand the dynamics of vector colonization by the bacteria and transmission to the host. Tick-borne relapsing fever spirochetes are blood-borne pathogens transmitted through the saliva of soft ticks, yet little is known about the transmission...

متن کامل

Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016